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Abstract 

Langerhans cells (LC) are bone marrow derived residents of 

the epidermis which express the CDIa surface antigen and 

undergo a variety of phenotypic and functional changes in vitro. 

To determine the effects of the epidermally associated cytokines 

granulocyte macrophage colony-stimulating factor (GM-CSF), 

Tumor Necrosis Factor-a (TNF-a), and lnterleukin-1 (IL-1) on LC 

phenotype in vitro, epidermal cells were cultured in the presence 

of these cytokines and the percentage of cells expressing CDIa 

was determined by flow cytometry. By the fifth day, the 

percentage of cells expressing CDIa in TNF-a and control cultures 

was about half of the starting value, while in IL-1 and GM-CSF 

cultures CDIa expression was respectively higher and lower than 

control. To determine if these effects on CDIa expression are 

generalizable, expression of CDIa by human cortical thymocytes 

was also studied. GM-CSF decreased and IL-1 increased 

thymocyte CDIa expression. In additon, these two cytokines had 

opposite effects on class I major histocompatibility complex 

(MHC) protein expression, suggesting that these two antigens are 

reciprocally regulated. To correlate these phenotypic changes 

with function, LC precultured with cytokines were tested for 
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their ability to stimulate allogeneic T-cell proliferation. GM-CSF 

treated cultures caused 2 to 3 times more T-cell proliferation 

than control cultures. Addition of antibodies reactive with class 

I and class II MHC molecules blocked T-cell proliferation while 

antibodies to CDIa did not. We conclude that GM-CSF, a cytokine 

that is produced by keratinocytes and thymic nonlymphoid cells in 

vitro, can decrease CDIa expression by thymocytes and LC, while 

increasing class I MHC expression by thymocytes. Furthermore, 

GM-CSF enhances the ability of human LC to stimulate allogeneic 

reactions in vitro. This ability can be blocked by antibodies to 

both class I and class II MHC molecules. 

Introduction 

Langerhans cells (LC) are a minor population of epidermal 

cells that have been the subject of a large body of research since 

their discovery by Paul Langerhans in 1868. Langerhans believed 

that the dendritic cells he had discovered with gold chloride 

staining were intraepithelial receptors for extracutaneous 

signals to the nervous system [1], and such a theory prevailed for 

a century. In 1968, however, Breathnach et al proved that murine 

Langerhans cells do not originate in the neural crest, by 

demonstrating that murine skin deprived of its neural crest 

components still contained LC [2]. Further experiments carried 

out by Frelinger et al using murine radiation chimeras 
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reconstituted with allogeneic bone marrow demonstrated that LC 

originate in bone marrow [3]. These findings were confirmed in 

similar experiments by Katz et al in the same year [4]. 

Subsequent studies in humans after male to female bone marrow 

transplantation, have established the bone marrow origin of 

human LC by demonstrating the presence of exclusively Y 

chromosome-positive LC (donor LC) in the skin biopsies of female 

bone marrow transplant recipients [5,6]. 

During the 1970's a large body of evidence accumulated that 

phenotypically linked LC to cells of the macrophage/monocyte 

lineage. Both types of cells express Fc and C3 receptors [7], HLA- 

DR (Class il major histocompatibility complex) molecules [8,9], 

membrane ATPase activity [11], and have the ability to migrate 

[10]. Based on these findings, as well as ultrastructural evidence 

[12,13], Katz et al has suggested that monocytes are the most 

likely precursors of epidermal LC [4], however formal proof of a 

specific LC precursor is lacking. 

In contrast to the similarities between LC and 

macrophage/monocytes, several phenotypic and structural 

features distinguish LC from all other cells studied to date. Most 

striking of these features is a cytoplasmic structure known as 

the Birbeck granule. In 1961, Birbeck published the first electron 

micrographs of epidermal LC in which a unique membrane bound 

granule was observed. Birbeck described this cytoplasmic 

granule as a linear structure with rounded ends and a striated 

line running down the center [14]. This is the typical "tennis 
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racket" shape that is usually associated with Birbeck granules. 

Recent evidence has suggested that these granules are involved in 

receptor mediated endocytosis along with lysosomes, coated pits, 

and coated vesicles [15,16,36], and they remain the gold standard 

for the identification of epidermal LC. 

Epidermal LC are also unique in their surface antigen profile. 

As mentioned above, they express class II MHC protiens, however, 

there is controversy as to whether they express very low levels 

of class I MHC molecules [17,71], or are totally deficient in class 

I MHC protein expression [18,19]. This relative lack of class I 

MHC protein expression by LC is quite unusual and is shared only 

with certain subsets of cortical thymocytes [37]. In addition, LC 

express the CDIa surface antigen which is a glycoprotein with a 

relative mass of 49,000 [20,21]. CDIa has also been called "T6" 

because it is recognized by the OKT6 monoclonal antibody [21], 

and is biochemically identical to Human Thymocyte Antigen 1 

(HTA-1) [22,23] which is expressed by cortical thymocytes 

[24,25]. In the further biochemical characterization of the CDIa 

molecule several similarities to class I MHC protiens have been 

noted. CDIa and class i MHC molecules share serologically 

defined epitopes [26] and have biochemically similar structures 

including three extracellular domains named a-1, a-2, and a-3 

[26-35]. CDIa and class I MHC protiens both associate with (3-2 

microglobulin through their a-3 domain [29-31], and both have 

been reported to associate with the CD8 thymocyte surface 

molecule [32,33]. In addition, the predicted secondary structure 
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of the a-1 and a-2 domains of CDIa is very similar to the antigen 

binding pocket of HLA-A2, which is a well characterized class I 

MHC molecule [27,28]. As a result of these similarities, it has 

been argued that CDIa represents a novel type of class I MHC 

molecule [30,31], and as such may be involved in the presentation 

of antigen to T-cells [26-33]. While presentation of antigen by 

CDIa has not been proven, CDIa does appear to be part of a 

receptor site since it is internalized via coated pits, coated 

vesicles, and endosomes in ways characteristic of receptor 

mediated endocytosis [36]. It is also intriguing that LC and 

cortical thymocytes are the only cells expressing CDIa and are 

the only nucleated somatic cells deficient in class I MHC protein 

expression [37,38]. The structural similarities, together with the 

reciprocal anatomic distribution of CDIa and class I MHC 

molecules, suggests that these molecules may perform either 

similar, or mutually exclusive functions. 

While recent work has focused on the precise role of immune 

function associated molecules such as CDIa expressed by LC, the 

function of LC themselves has been studied and debated since 

their discovery. As mentioned above, Langerhans himself initially 

believed that these cells were part of the peripheral nervous 

system [1], however, in 1882 he published a short correction of 

his original paper of 1868 stating "I am now convinced . . . that 

my cells are in no way essential for nerve endings" [39]. He 

appearently based this correction on the histological work of 

Mojsisovics and Merkel [39]. Langerhans' retraction went largely 
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unnoticed, and little progress was made toward the understanding 

of LC function for more than a century. In 1973, however, 

Silberberg described the apposition of LC and mononuclear 

lymphocyte-like cells in man, within 4-6 hours of the topical 

application of mercury bichloride, which is known to induce 

contact hypersensitivity [10]. Furthermore, this apposition was 

identified only in subjects with allergic reactions to mercury 

bichloride, and not in subjects with primary irritant reactions, or 

no reaction to mercury bichloride [10,40,41]. In addition, it has 

been shown that contact sensitivity to a specific allergen can be 

passively transferred by lymph node cell suspensions from 

sensitive to naive animals, and after dermal challenge with the 

allergen, allergen bearing LC are found in lymph nodes of the 

formerly naive animals [42,46]. Subsequent studies have proven 

that LC can pick up antigen in the skin and carry it by way of 

dermal lymphatics, to draining lymph nodes [42-45]. These 

findings firmly established an immunological role for LC and 

strongly suggested that they may be involved in the presentation 

of antigen to T-cells in lymph nodes. In vivo proof of the antigen 

presenting capacity of LC has accumulated from two other types 

of observations as well. In the first, it has been noted that 

cutaneous surfaces devoid of LC do not support the development 

of contact hypersensitivity after application of allergen [59-61]. 

In the second, LC deficient allografts such as tape-stripped skin 

and cornea, have been shown to lack the ability to induce 

alloimmune reactions [62-65]. More recently Cruz et al have 
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reported that intravenously infused murine LC migrate 

preferentially to skin where they can participate in the induction 

of contact hypersensitivity [66]. In summary it is known that LC 

originate in bone marrow, migrate to the epidermis where they 

pick up antigen, and then transport antigen to draining lymph 

nodes where they stimulate antigen specific immune responses. 

The in vivo findings discussed above have been supported by 

many studies of LC in vitro. While epidermal LC do not survive in 

culture for more than 6 to 9 days [69,70], recent interest has 

focused on marked changes in their observed phenotype and 

function in vitro. As mentioned above, freshly isolated LC 

express class II MHC [8,9] and CDIa surface antigens [21] and 

little or no class I MHC protein [17-19]. However, when 

maintained in culture for 2 to 3 days, LC show increased 

expression of class I MHC and class II MHC antigens, while losing 

CDIa positivity [71,72]. These phenotypic changes have been 

related to changing functional activities of LC such as processing 

antigen in the skin, and then presenting it in draining lymph nodes 

[75]. Studies of human LC have shown that they can substitute for 

macrophages in presenting a variety of antigens such as 

tuberculin protein, herpes simplex virus proteins, trichophytin, 

and nickel sulfate to autologous T-cells from sensitized donors 

[47-50]. In addition, studies in both animals and humans have 

shown that LC enriched epidermal cell suspensions, but not LC 

depleted suspensions, induce a strong proliferative response from 

resting allogeneic T-cells in mixed epidermal-lymphocyte 
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reactions (MELR's) [50,51]. This stimulation has been shown to 

occur in an MHC class II restricted fashion [52-53]. Since it is 

the CD4 glycoprotien which recognizes antigen complexed to MHC 

class II molecules [54-58], this stimulation probably involves 

CD4+ cells, such as T-helper lymphocytes. Functional studies 

comparing the abilities of freshly isolated and cultured murine LC 

have shown that freshly isolated LC actively present protein 

antigens such as myoglobin to specifically primed T-cells, but 

are relatively poor stimulators of allogeneic T-cells in MELR's 

[73]. However, after culture for two to three days, murine LC 

present protein antigen only very weakly, while their ability to 

stimulate allogeneic T-cells increases roughly ten fold [73-75]. 

Similar studies by Teunissen and Romani have shown that the 

ability of human LC to stimulate allogeneic reactions increases 

two to ten fold after 3-5 days of culture [76,71]. Teunissen has 

suggested that this increased ability to stimulate allogeneic T- 

cells may be due to increased MHC class II protein expression on 

cultured LC [76], however, the relationship between the 

phenotypic and functional changes seen in cultured LC has not 

been clearly defined. All of the above observations from in vitro 

and in vivo studies have led to the conclusion that LC are the 

primary antigen presenting cells of the skin [67], and have 

implicated LC as the most peripheral component of a unique 

collection of cells and lymphoid organs called skin-associated 

lymphoid tissues (SALT) that function as a group to perform the 

specialized immune requirements of the skin [68]. 
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Most recently, reports from work in murine systems have 

shown that epidermally associated cytokines such as Interleukin- 

I (IL-1), Granulocyte Macrophage-Colony Stimulating Factor (GM- 

CSF), and Tumor Necrosis Factor-a (TNF-a), may influence LC 

phenotype and function in vitro [69,77-79]. Specifically, Witmer- 

Pack and collegues have shown that the addition of GM-CSF to 

murine LC cultures has three effects over a 2-3 day culture 

period: cell viability is increased, LC become larger and more 

dendritic, and their stimulatory ability for allogeneic T-cells 

increases 10 to 20 fold [77]. Similar work by Heufler et al using 

several measures of stimulatory ability has comfirmed that it is 

the direct effect of GM-CSF, and not simply improved viability 

which leads to this enhancement in function [69]. In addition, 

they showed that a combination of IL-1 and GM-CSF added to 

murine LC cultures leads to a 2 fold further increase in 

stimulatory capacity compared to LC cultured with GM-CSF alone 

[69]. TNF-a has been shown to enhance murine LC viability in 

vitro, however, TNF-a treated LC remain relatively poor 

stimulators of allogeneic T-cells [78]. In phenotypic studies 

Belsito et al have recently reported an enhancement of MHC class 

II antigen expression by murine LC cultured in the presence of 

either IL-1, GM-CSF or TNF-a [79]. Evidence of the effects of 

these cytokines on human epidermal cells is scarce. However, 

Walsh et al report that IL-1 can induce CDIa expression on human 

gingival epithelial cells [80]. All of these in vitro findings may 

have important implications for the regulation of LC phenotype 
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and function in vivo since it is known that cultured human 

keratinocytes produce IL-1 [79], and GM-CSF [82]. It has also been 

shown recently that TNF-a message is detectable in human 

epidermal mRNA preparations [Longley et al in preparation]. When 

injected intraveneously in mice, TNF-a targets specifically to the 

skin [83], indicating the presence of receptors for TNF-a, and 

suggesting that this cytokine plays a role in the biology of the 

skin. To determine how these cytokines affect the phenotypic 

characteristics of human LC in vitro, we cultured purified LC 

from normal human skin with IL-1, GM-CSF, and TNF-a, and 

compared CDIa expression with untreated cultures. In a similar 

set of experiments we cultured human cortical thymocytes, which 

also express CDIa, with the same cytokines and measured both 

CDIa and class I MHC expression. To assess the functional 

effects of these cytokines, we compared the ability of treated 

and untreated human LC to stimulate proliferation of allogeneic 

T-cells, and attempted to block this proliferation with a variety 

of monoclonal antibodies. T-cell stimulation was measured 

through standard techniques of the MELR. 

Materials and Methods 

Isolation of Langerhans Cells 

Normal human skin was obtained from elective plastic surgery 

procedures and trimmed to the level of the papillary dermis. Skin 
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was then incubated in Tyrodes solution with 10 mg/ml Dispase 

(Boerhinger Mannheim, W. Germany) overnight at 4°C and then at 

37°C for 20 minutes. Dispase is a neutral protease which 

selectively digests fibronectin and type IV collagen [87] thus 

allowing sheets of epidermis to be easily separated from the 

dermis and assuring that only epidermal cells were studied. 

Epidermal sheets were then incubated at 37°C for 15 minutes in 

0.125% Trypsin (Gibco Labs Inc., Grand Island, New York), vortexed 

at low speed for 1-2 minutes and filtered through three layers of 

sterile gauze. The resulting epidermal cell suspension was then 

layered over Histopaque-1077 (Sigma Diagnostics, St. Louis, Mo.) 

at 4°C and centrifuged at 300 g's for 20 minutes. Cells remaining 

at the interface were collected, viability assessed by trypan blue 

exclusion, and the percentage of cells expressing CDIa measured 

by flow cytometry after staining with OKT6 monoclonal antibody 

(from ATCC hybridoma # CRL 8020), and FITC conjugated goat 

anti-mouse secondary antibody (Becton Dickinson, Mountain View, 

CA). This technique reliably yielded 97-100% living cells and a 

maximum of 30% CDIa positivity. In some LC experiments, a 

further enrichment for CDIa positive cells was carried out by 

staining interface cells with an anti-class I MHC monoclonal 

antibody (anti-HLA-A,B,C from the W6/32 hybridoma ATCC # 

HB95) and counterstaining with an iron conjugated goat anti¬ 

mouse secondary antibody (Advanced Magnetics Inc., Cambridge, 

MA.). These cells were then precipitated to a magnetic plate 

(Advanced Magnetics Inc.) and nonmagnetic cells were washed 
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from the plate. This procedure increased the percentage of GDI a 

positive cells from a maximum of 30% with Histopaque 

enrichment alone, to a maximun of 50%. 

Langerhans Cell Cultures 

Cells were then plated out at 1X10® cells/ml in 24 well flat 

bottomed plates (Corning Glass Works, Corning, NY) in RPMI 1640 

(Gibco Labs Inc.), 10% defined fetal bovine serum (HyClone Labs 

Inc., Logan, UT), 1% Penicillin G/Streptomycin/Amphotericin B 

(Gibco Labs Inc.) and lOng/ml of recombinant human IL-1, GM-CSF 

(gift of Dr. Steven Gillis, Immunex Corp., Seattle, WA.), or TNF-a 

(courtesy of Dr. Thomas Kupper, Yale School of Medicine, Dept of 

Dermatology) versus control. Viability and GDI a positivity were 

assessed on day .0, 2, 3, and 5 of culture by flow cytometry. 

Thymocyte Isolation 

Thymus glands were obtained from newborn infants during the 

course of corrective cardiac surgery, minced, suspended in RPMI 

1640 (Gibco Labs Inc.), and filtered through sterile gauze. The 

resulting cells were purified on a Histopaque-1077 (Sigma 

Diagnostics) gradient as for LC, and then cultured at 1X107 

cells/ml with conditions and cytokines as for LC. In a series of 

depletion experiments, GDI a, or class I MHC positive cells were 

depleted from thymus gland cell suspensions before culture using 

the appropriate monoclonal antibody, and the magnetic technique 

detailed above. In all cultures, the percentage of cells expressing 
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CDIa and class I MHC was determined on day 0 and 8 by flow 

cytometry. 

Preparation of T-cells 

Resting allogeneic T-cells for mixed cultures were prepared 

as follows: Peripheral mononuclear cells (PMN) were obtained 

from the blood of healthy volunteers through Histopaque density 

gradient centrifugation as above. PMN were then suspended in 

RPMI 1640 (Gibco Labs Inc.), 10% defined fetal bovine serum 

(HyClone Labs Inc.), 1% Penicillin G/Streptomycin/Amphotericin B 

(Gibco Labs Inc.) at 1X107 cells/ml and monocytes allowed to 

adhere to a plastic culture flask (Corning Glass Works) for 3-12 

hr.s. Medium containing nonadherent cells (lymphocytes) was 

then decanted and the cells stained with an anti-class II MHC 

protein antibody which reacts with HLA-DR, DP, (and possibly DQ) 

framework determinant produced by the IVA12 hybridoma (ATCC 

#HB 145). Resting T-cells were then negatively selected with 

the magnetic procedure described above. This procedure reliably 

yielded a cell suspension of 94-97% T-cells as assessed by 

expression of T-cell receptor associated antigen (CD3) by flow 

cytometry. 

Mixed Epidermal Cell-Lymphocyte Cultures 

Epidermal cells were prepared and cultured as above except 

that they were plated out in triplicate over a range of 0-3000 LC, 

in 200 microliters per well, in 96 well round bottomed plates 
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(Corning Glass Works). The culture medium was the same as for 

LC cultures, with either GM-CSF, IL-1, or TNF-a at 10 ng/ml. On 

day 3 of culture (72 hr.s), plates were centrifuged for 5 minutes 

at 300 g and the culture medium replaced with medium containing 

10$ purified allogeneic T-cells without cytokines. These mixed 

epidermal cell-lymphocyte cultures were then incubated for 4 

more days, pulsed with 1 microCurie of 3H-Thymidine (Amersham 

Inc., UK) per well, harvested 16 hr.s later and counts per minute 

(CPM's) assessed with an LBK scintillation counter. 

Blocking Studies 

MELR's were performed as above, however monoclonal 

antibodies to either class I MHC (anti-HLA-A,B,C, produced by the 

hybridoma ATCC # HB95), class II MHC ( ATCC # HB145), or CDIa ( 

ATCC # CRL8020) were added to each set of cultures at the time 

of T-cell addition. T-celi stimulation was measured by ^H- 

thymidine incorporation as above. 

Statistical Analysis of Results 

For LC cultures, experimental and control mean values with 

standard errors were calculated and compared using the Student's 

t-test. For thymocyte cultures all experimental values were 

expressed as percents of control with control values set to 100%. 

Averages and standard errors of experimental values were then 

calculated and compared using a one way analysis of variance 
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(ANOVA). In MELR's experimental and control means and standard 

errors were calculated and compared using an ANOVA as above. 

Results 

Langerhans Cell Cultures 

Viability of epidermal cells decreased in a predictable manner 

such that nearly all cells were dead by trypan blue exclusion by 

day 6 (Figure 1). After 2 days of culture, GDI a expression among 

viable cells in medium alone, GM-CSF, IL-1, and TNF-a had 

dropped from 30% upon isolation to 12.4%, 13.5%, 13.0%, and 

11.4% respectively. By day 5 of culture, CDIa expression among 

control cells had dropped to 9.75±/l.2%, while TNF-a and IL-1 

cultured cells were 11.4+.1.2% and 14.5±,Q.4% positive 

respectively. However, only 4.2+0.3% of GM-CSF cultured ceils 

were CDIa positive by day 5 (Figure 2). IL-1 significantly 

prolonged the expression of epidermally associated CDIa antigen 

compared to untreated cultures (p=0.02), while GM-CSF 

significantly decreased CDIa expression (p=0.01). TNF-a did not 

significantly alter CDIa expression in any cultures. 

Thymocyte Cultures 

The percentage of cells expressing CDIa or class I MHC 

antigens after 8 days was determined after culture with the 

indicated cytokines. The number of cells expressing either 
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antigen in cytokine treated cultures was divided by the number of 

cells expressing the same antigen in untreated cultures and the 

resulting value multiplied by 100 to give the percent of control 

cells expressing CDIa or class I MHC antigen. Figure 3 shows the 

mean values obtained from 5 such experiments. The percentage of 

cortical thymocytes expressing CDIa on day 8 was 124+12.7% 

(TNF-a), 157±33% (IL-1), and 78+7.4% (GM-CSF) of control, while 

the percentage of cells expressing class I MHC was 109+12%, 

92±8.0%, and 148+34% of the control cultures respectively. Thus 

GM-CSF treatment was associated with accelerated loss of CDIa 

expression from thymocyte cultures (p=0.03), and increased class 

I MHC expression (p=0.02), compared to control. IL-1 was 

associated with effects opposite to those of GM-CSF, maintaining 

the percentage of cells expressing CDIa above control (p=0.01) 

and decreasing the percentage of cells expressing class I MHC, 

however this effect was not significant (p=0.6). TNF-a showed no 

significant effect on either CDIa or class I MHC expression, 

however the small changes it did cause were similar in trend to 

those of IL-1. 

In a well known model of surface antigen expression during 

thymocyte maturation, very early thymocytes are thought to be 

CDIa negative/class I MHC positive, but during differentation 

become CDIa positive/class I MHC negative. These cells again 

become CDIa negative/class I MHC positive as they mature fully 

and exit the thymus [37]. There is also a small, well documented 

population of CDIa negative/class I MHC negative (double 
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negative) thymocytes which may represent cells in transition 

between the major populations listed above [37]. In order to more 

clearly define the effects of cytokines on surface antigens at 

various points along this linear differentiation pathway, we 

performed the same experiments with thymocyte populations that 

had been depleted of CDIa and class I MHC positive cells as 

detailed above. 

Figure 4 shows the result of experiments in which CDIa 

positive cells were magnetically depleted from thymocyte 

suspensions prior to culture. In these experiments CDIa 

expression was 108±3.8% (TNF-a), 146±16% (IL-1), and 64±6% 

(GM-CSF) of control, while class I MHC expression was 139+12%, 

220±_17%, and 96^8.8%, respectively. Therefore, GM-CSF 

prevented CDIa expression by CDIa negative/class I MHC positive 

cells (p=0.01). However, GM-CSF had no effect on class I MHC 

expression in this population of thymocytes (p=0.8). This finding 

implies that GM-CSF may either block the maturation of CDIa 

negative/class I MHC positive cells to the CDIa positive/class I 

MHC negative phenotype, or accelerate development of the most 

mature CDIa negative/class I MHG positive thymocytes. In CDIa 

depleted cultures, IL-1 increased the percentage of cells 

expressing CDIa compared to control (p=0.03), an effect opposite 

to that of GM-CSF, and unlike undepleted cultures, IL-1 

significantly increased the expression of class I MHC (p=0.08). 

These effects could be explained if IL-1 was a general 

accelerator of thymocyte maturation moving cells both into and 
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out of the CDIa positive/class I MHC negative state. Another 

explanation could be that IL-1 increases the antigen expression 

and/or viability of thymocytes without effecting maturation. In 

this case, the increased percentage of cells expressing these two 

antigens could be explained by larger numbers of viable cells 

expressing antigen, or more cells expressing detectable levels of 

antigen. TNF-a again produced insignificant changes in antigen 

expression in these cultures. 

In a final set of thymocyte experiments, class I MHC positive 

cells were depleted prior to culture yielding thymocyte 

populations that were 80-90% CDIa positive, and containing 

small numbers of CDIa negative/class I MHC negative cells. The 

results of these experiments are shown in figure 5. CDIa 

expression among thymocytes was 126±8.4% (TNF-a), 152+17% 

(IL-1), and 94+3.9% (GM-CSF) of control, while class I MHC 

expression was 122^8.6%, 108^4, and 180±4.0% of control, 

respectively. In these experiments IL-1 significantly increased 

the percentage of ceils expressing CDIa (p=0.03), and GM-CSF 

significantly increased class I MHC expression (p=0.08), while no 

other results were significant. These findings lend additional 

support to the hypothesis that GM-CSF accelerates the maturation 

of CDIa positive/class I MHC negative cells to the CDIa 

negative/class I MHC positive phenotype. In addition these 

results suggest that IL-1 may influence the differentation of 

CDIa negative/class I MHC negative cells to the CDIa 

positive/class I MHC negative phenotype. 
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To summarize the results of these three sets of experiments, 

GM-CSF tended to decrease CDIa expression compared to control 

in undepleted, CDIa depleted, and class I MHC depleted cultures, 

however the effect in this latter set of cultures was small and 

not statistically significant (p=0.6). IL-1 increased CDIa in all 

three sets of cultures, while TNF-a had no effect on CDIa 

expression. GM-CSF increased class i MHC expression compared 

to controls in undepleted and class I MHC depleted cultures, but 

not in CDIa depleted cultures. This is exactly the opposite effect 

and pattern of significance compared to GM-CSF's effect on CDIa. 

IL-1 increased class I MHC expression only in CDIa depleted 

cultures, and as in studies of CDIa, TNF-a had no effect on class I 

MHC expression. This complex pattern of results is summarized 

in table 1. 

In both thymocyte and LC cultures, GM-CSF tended to decrease 

CDIa expression compared to control, while IL-1 increased CDIa 

expression. TNF-a had no effect on CDIa expression in either 

thymocyte or LC cultures. In undepleted thymocyte cultures GM- 

CSF tended to reciprocally effect CDIa and class I MHC, 

decreasing CDIa expresion while enhancing class I MHC 

expression. 

Functional Studies of Langerhans Cells 

As seen in figure 6, LC precultured for 72 hours with GM-CSF 

were more potent stimulators of allogeneic T-cell proliferation 

than cells cultured with IL-1, TNF-a or no cytokine. Specifically, 
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GM-CSF treated LC produced significantly more allogeneic T-cell 

proliferation than LC cultured under all other conditions. This 

was true at all doses of LC tested (p<0.02), except at 300 LC 

where proliferation was the same as control (p=0.5). LC cultured 

with IL-1 showed no significant increase in proliferation at any 

dose tested, while TNF-a treated LC produced less proliferation 

than control, but only at a dose of 900 LC (p=0.05). Figure 7 

shows the results of subsequent experiments concentrating on 

the effect of GM-CSF, and extending the doses of LC used to a 

maximum of 3,000. In these cultures GM-CSF treated LC were 

more potent stimulators of allogeneic T-cells than control cells 

at p<0.01 for all doses of LC tested except at 250 LC where 

p=0.05. Also of note is that there was no significant difference 

in the amount of T-cell proliferation seen in GM-CSF and control 

cultures in which there were no LC even though these wells were 

treated as if they did contain LC during the 72 hour pretreatment 

period. This observation precludes the possibility that it is the 

presence of contaminating GM-CSF that is solely responsible for 

the enhanced T-cell stimulation seen in GM-CSF treated cultures. 

In addition, there was a direct relationship between the number 

of LC in culture and the level of T-cell proliferation, regardless 

of the culture conditions, indicating that GM-CSF augments LC 

ability to stimulate allogeneic reactions on a cell by cell basis. 

Blocking Studies 
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Figure 8 shows the results of MELR's in which all Langerhans 

cells were pretreated for 72 hours with GM-CSF. At the time of 

T-cell addition, however, antibodies reactive to either GDI a, 

class I MHC, or class II MHC were added to culture. In these 

cultures the addition of anti-GDI a had no effect on allogeneic T- 

cell stimulation. In cultures treated with anti-class II MHC, 

however, T-cell stimulation was inhibited in cultures containing 

1500 LG or less (p<0.02), while at higher doses of LG, addition of 

anti-class II MHC antibody did not alter levels of T-cell 

stimulation. Most interestingly, when anti-class 1 MHC antibody 

was added to culture there was an inhibition in T-cell 

stimulation at all doses of LG tested (p<0.02). 

Discussion 

The study of LG in vitro has long been hampered by difficulties 

in purifying large numbers of intact cells from the epidermis. By 

modifying the methods used by a variety of different 

investigators, we have developed a technique for rapidly isolating 

human LG without altering their surface phenotype. Many methods 

for LG isolation involve long incubations of skin with the enzyme 

trypsin to obtain epidermal cell suspensions [84], followed by LG 

enrichment by a variety of techniques. These include "panning" 

[77], density gradient centrifugation [76], and fluorescence 

activated cell sorting [85]. While these techniques yield very 
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pure populations of LC, they are often long, expensive, and plagued 

by the uncertain effects of trypsin on LC surface proteins. 

Most recently Hanau et a! have described an immunomagnetic 

selection technique where by epidermal cell suspensions are 

stained with a GDI a reactive antibody, and then counterstained 

with a secondary antibody that is conjugated to small iron beads. 

Cell suspensions are then precipitated to a magnetic plate and 

GDI a negative cells washed from the plate. This procedure 

results in a very pure population of LC that can be obtained 

quickly and economically [86]. However, unless the amount of 

magnetic material used is carefully titrated, the resulting LC are 

rendered useless for in vitro functional studies due to the iron 

beads bound to their surface. By incubating skin with the enzyme 

Dispase which is known to digest only fibronectin and type IV 

collagen [87], we have obtained relatively unmodified epidermal 

cell suspensions. These suspensions are then enriched for LC by a 

combination of density gradient centrifugation, and a negative 

immunomagnetic selection that depletes keratinocytes without 

altering LC. This technique is detailed above and routinely yields 

epidermal ceil suspensions 30-50% GDI a positive in 4 to 5 hours. 

Our phenotypic studies of both LC and cortical thymocytes 

suggest that expression of GDI a antigen can be altered by IL-1, 

and GM-CSF. In particular, GM-CSF tended to accelerate the loss 

of GDI a from LC and thymocyte cultures, while IL-1 maintained 

it. The effects of these two cytokines on class I MHC expression 

in thymocyte cultures seemed to be the opposite of their effects 
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on GDI a. That is to say, GM-CSF maintained class I MHC 

expression above control, while IL-1 accelerated its loss from 

nondepleted thymocyte cultures. These results lend credence to 

the notion that GDI a and class ! MHC are reciprocally regulated 

and are consistant with the observation that GDI a and class I MHC 

are reciprocally expressed in vivo [38,39]. Moreover, because 

these cytokines can be produced by keratinocytes [79,82] these 

observations suggest that GM-CSF and IL-1 may play similar roles 

in vivo. While we have shown that the loss of GDI a antigen by 

human LG can be modulated by IL-1 and GM-CSF, for technical 

reasons we were unable to study the effects of these cytokines 

on LG MHG class I expression. As mentioned above however, a 

recent study by Romani et al, has shown that the loss of GDI a 

expression by human LG is accompanied by a rapid increase in 

both class I and class II MHC expression [71]. There remains 

however, no published observations of the effects of epidermally 

associated cytokines on class I MHC expression by LG in vitro. 

Our phenotypic results are consistant with previous work in 

murine systems showing that loss of GDI a analogs can be 

accelerated in vitro by exogenous GM-CSF [69,77]. These studies 

also report that GM-CSF enhances the viability of murine LG in 

vitro. In our study there was no significant difference in 

viability among cells cultured with IL-1, GM-CSF, TNF-a, or 

control as assessed by trypan blue exclusion. This may represent 

an important difference between the behavior of human and 

murine LC in vitro. We are aware of only one study of the effects 
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of cytokines on human LC; Walsh et al have shown that culturing 

GDI a depleted human gingiviai cells with IL-1 induces expression 

of GDI a in these cultures [80], Our data support this finding in 

both human LC and human thymocyte cultures and, as discussed 

below, we have shown that CDIa depleted thymocytes can be 

induced to express CDIa after treatment with IL-1, much as 

gingiviai cells did in Walsh's study. 

In our initial experiments on the effects of GM-CSF, IL-1, and 

TNF-a on CDIa and class 1 MHC expression by unfractionated 

thymocytes, we found that GM-CSF was associated with 

decreased expression of CDIa and increased expression of class I 

MHC, while IL-1 was associated with increased expression of 

CDIa. The significance of these effects during thymocyte 

differentiation are unclear, however, due to the complexity of the 

thymic microenvironment. It is known, however, that thymocyte 

differentiation takes place in a linear fashion with respect to 

surface antigen expression. In particular, it is believed that bone 

marrow derived prothymocytes enter the thymus where they are 

initially CDIa negative/class I MHC positive. During 

differentiation, they become CDIa positive/class I MHC negative, 

and finally as they develop into mature T-cell subsets, they once 

again become CDIa negative/class ! MHC positive [37]. In order to 

isolate subsets of thymocytes at various points along this 

pathway and more precisely determine the effects of cytokines 

during thymocyte development, we performed the CDIa and class I 

MHC depletion experiments detailed above. While the results of 
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these depletion experiments must be interpreted with caution, 

the pattern of effects seen indicates that GM-CSF may prevent 

GDI a expression by ceils of the GDI a negative/class I MHC 

positive phenotype, and enhance expression of class I MHC by 

cells of the GDI a positive/class I MHC negative phenotype. In 

general, this pattern suggests that GM-CSF may be involved in the 

reciprocal regulation of GDI a and class I MHC molecules. When 

explained in the context of the thymocyte differentiation model 

mentioned above, these results imply that GM-CSF may either 

block the development of the GDI a positive/class I MHC negative 

phenotype, and/or accelerate the development of the CDIa 

negative/class I MHC positive phenotype. 

The effects of 11-1 on CDIa and class I MHC expression in 

thymocyte cultures are in general opposite to those of GM-CSF, in 

that IL-1 increases CDIa expression by cells expressing class I 

MHC (CDIa positive/class S MHC negative and CDIa negative/class 

I MHC positive thymocytes), however IL-1 also increases CDIa 

expression by CDIa positive/class I MHC negative thymocytes. 

IL-1 has no effect on class I MHC expression unless CDIa positive 

cells are depleted, in which case IL-1 increases class I MHC 

expression. The observed effects of IL-1 on thymocyte surface 

antigen expression are hard to explain within the context of the 

thymocyte differentiation model discussed above, because IL-1 

tended to increase both CDIa and class I MHC expression by CDIa 

negative/class I MHC positive thymocytes. This effect could be 

accounted for if IL-1 had a significant effect on CDIa 
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negative/class I MHC negative thymocytes in transition between 

the major populations, or if IL-1 enhances the antigen expression 

and/or viability of thymocytes in vitro, in which case more cells 

may appear to be expressing both antigens compared to control. 

We are currently performing experiments using magnetically 

selected GDI a negative/class I MHC negative thymocytes to 

explore the effects of IL-1, as well as GM-CSF and TNF-a on this 

population of ceils. 

Also of note is that TNF-a produced only weak changes in GDI a 

and class I MHC expression which were not statistically 

significant. This is not suprising because while TNF-a production 

has been shown in human thymocytes [92], its effects may have 

been obscured since TNF-a can induce GM-CSF production in a 

variety of cell types [91]. Thymocyte differentiation is 

influenced by a variety of factors including cell-cell contact [93] 

and cytokines released by epithelial and mesenchymal cells [94], 

and while our studies provide only clues to unravelling the 

complex environment of the thymus, they do show that GDI a in 

both skin and thymus is similarly effected by GM-CSF and IL-1 

thus supporting a global role for these cytokines in 

immunoregulation. 

It is becoming increasingly clear from our work and that of 

others that IL-1 and GM-CSF are regulators of immune function 

associated molecules such as MHC class I and GDI a in vitro. 

Since these cytokines are made by normal human keratinocytes in 

vitro [81,82] it is possible that they play some role in the 
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regulation of human LC in vivo. In addition, IL-1 production has 

been demonstrated in thymic epithelial cells [88], and GM-CSF 

production by thymic nonlymphoid cells [89] raising the 

possibility that these cytokines are also involved in the 

regulation of antigen expression by thymocytes in the thymus. 

While evidence of cytokine production by cells of the skin and 

thymus supports the conclusion that the phenotypic regulation we 

have described in vitro may be important in vivo, this evidence 

also presents a problem in the interpretation of our data. For 

example, our LC cultures are typically contaminated with >5 0% 

keratinocytes, and any culture obtained from thymus gland will 

invariably contain contaminating epithelial cells and fibroblasts. 

It is known that IL-1 can induce production of GM-CSF in 

keratinocytes [90], while TNF-a can induce its production in 

fibroblasts, smooth muscle ceils, and endothelial cells [91]. Thus 

the direct effect of exogenous cytokines may be hard to assess 

and it may be that our best attempts to create simple in vitro 

systems still result in a complex interaction of cells and 

signalling molecules, as is the case in vivo. Despite these 

concerns, it seems clear that epidermally associated cytokines 

influence the expression of immune function associated 

molecules on human LC and thymocytes. As discussed below, 

these cytokines also influence the functional abilities of LC in 

vitro. 

It has been known for some time that the ability of human 

Langerhans cells to stimulate allogeneic T-cells increases 
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dramatically after 2-3 days in culture [71,76], and recent murine 

studies have shown that GM-CSF can accelerate the development 

of this ability [69,77]. We have extended this observation using 

human LC. In particular we have shown that human LC precultured 

with GM-CSF for 72 hours are 2-3 times more potent than control 

cells in the stimulation of allogeneic T-cells. While this finding 

may have been predicted from murine studies, it is important in 

light of the differences noted between murine and human immune 

systems. These differences have been demonstrated by the fact 

that human epidermis lacks a cell equivalent to the Thy 1 positive 

dendritic T-cells which represent 2-5% of cells in murine 

epidermis. Since keratinocytes can produce GM-CSF [82], it is 

possible that the exogenous GM-CSF used in these experiments 

merely augmented endogenous GM-CSF in the cultures, thus 

accelerating both the phenotypic and functional changes. Our 

functional studies with TNF-a and IL-1 showed slightly lower 

levels of T-cell proliferation than control, however these results 

were not statistically significant. It is possible that endogenous 

GM-CSF was subtracting from the magnitude of these cytokines' 

effects. We are therefore planning blocking studies using anti- 

GM-CSF antibodies to further isolate the effect of IL-1, TNF-a, 

and endogenous GM-CSF on LC in vitro. It is not clear from our 

studies whether the increased stimulatory capacity of GM-CSF 

cultured cells represents a change in LC physiology or is mediated 

by phenotypic changes such as increased class I MHC or decreased 

CDIa expression. It is clear that the effect is not due to changes 
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in viability of LC in culture since viability was the same in all of 

our experimental and control groups. We were concerned that GM- 

CSF might cause increased allogeneic T-cell stimulation by a 

direct effect on T-cells. This is an unlikely explanation for our 

results for several reasons. For one, LC were carefully washed of 

cytokine containing medium before addition of allogeneic T-ceils. 

Second, wells in which there was culture medium and GM-CSF but 

no LC did not show increased T-cell proliferation compared to 

wells in which there was culture medium, no GM-CSF, and no LC. 

This finding precludes the possiblity that it was the direct effect 

of GM-CSF that was solely responsible for the increase in T-cell 

proliferation seen. It is theoretically possible that a small 

amount of residual GM-CSF stimulated proliferation of allogeneic 

T-cells, but since there was probably some endogenous GM-CSF in 

all cultures, we doubt that it could have had a significant effect. 

Another far less likely possibility is that GM-CSF increases 

the ability of keratinocytes to stimulate allogeneic T-cells. Many 

studies have shown that depleting LC from epidermal ceil 

suspensions renders these suspensions all but devoid of the 

ability to stimulate T-cells [50,95]. Studies comparing the 

ability of injected LC and keratinocytes to prime allogeneic 

reactions in mice show that LC are >10^ times as potent as 

keratinocytes at priming allogeneic reactions to subsequent skin 

allografts [96,97]. It appears then that the ability of 

keratinocytes to stimulate allogeneic reactions is limited at 

best, and it is therefore unlikely that they are capable of inducing 
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the high levels of T-cell proliferation typically associated with 

LC, even under the influence of GM-CSF. 

It is reasonable to say then that the increased stimulation 

seen in our GM-CSF treated cultures is probably due to a direct 

effect on LC. The mechanism of this effect has not been 

discerned in either human or murine systems. It is attractive to 

postulate that this increased functional ability is in some way 

related to the changes in surface phenotype associated with GM- 

CSF pretreatment, and our blocking studies are an attempt to 

explore this possibility. 

In these blocking experiments all LC used were pretreated 

with GM-CSF in order to compare the effects of the three blocking 

monoclonal antibodies used (anti-class I MHC, anti-class II MHC, 

and anti-CDIa) to GM-CSF treated LC alone. As predicted from 

many in vitro and in vivo studies of antigen presentation by LC, 

anti-class II MHC blocked T-cell stimulation in a statistically 

significant way, even though the effect was saturated at higher 

doses of LC. The anti-class II MHC antibody used in these 

cultures was a filtered, titered hybridoma supernatant, and the 

precise concentration of antibody was unknown. It is possible, 

therefore, that high numbers of LC overcame the class IS MHC 

blockade, since the amount of anti-class IS MHC supernatant used 

was constant throughout our cultures. 

An interesting and unpredicted finding from these blocking 

experiments is the significant decrease in T-cell stimulation 

seen in anti-class I MHC treated cultures at all doses of LC 
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tested. This is a novel observation in MELR's using LC, and we are 

unaware of other workers in animal or human systems reporting 

or even attempting this type of blockade. It is possible that the 

anti-class ! MHC antibody added to cultures is producing this 

blockade in an idiosyncratic or nonspecific fashion, however the 

other more interesting possibility is that LC in vitro are involved 

in allogeneic T-cell stimulation in a non-class II MHC restricted 

fashion. There is some indirect evidence to support this notion in 

the findings of Romani et a! which show that human LC 

dramatically increase their expression of MHC class I surface 

antigens after 2 to 4 days in vitro, while increasing their ability 

to stimulate allogeneic reactions [71]. 

Finally, the addition of anti-CDIa monclonal antibody had no 

effect on the levels of T-ceii stimulation seen when comapared 

to control cultures without blocking antibodies. CD1 a has many 

similarities to MHC class I molecules as discussed above [26-35], 

and it has been speculated that CDIa may then have a function 

similar to class I MHC molecules, namely antigen presentation to 

CD8 positive T-cells [57,97]. CD8+ T-cells are generally 

associated with suppressor and cytotoxic functions [54], and 

their proliferative response to stimulation is generally smaller 

and shorter in duration than that of CD4+ cells [99]. CD8+ cells 

are also difficult to grow because they often kill the cells that 

stimulate them [100], and have stringent growth requirements 

including the presence of IL-2 [101]. As a result, stimulation of 

CD8+ cells by LC bearing CDIa could easily be overlooked in 

33 



www.manaraa.com



www.manaraa.com

MELR's containing large numbers of CD4+ cells. If such 

stimulation were obscured, blockade of stimulation would surely 

be obscured as well. Thus, the lack of blockade of T-cell 

stimulation by anti-CDI a antibody in our cultures does not 

preclude the possibility that GDI a is functioning as an antigen 

presenting molecule for a subset of CD8+ lymphocytes. 

In order to explore the possibility of class I MHC ( or GDI a) 

stimulation of CD8+ cells in vitro, we are planning a series of 

experiments using GM-CSF cultured LG and fractionated CD4+ and 

CD8+ subsets of T-ce!ls in MELR’s. In addition, these experiments 

will use IL-2 in T-cell culture medium in order to amplify the 

proliferative response of CD8+ cells [101]. These experiments 

may shed additional light on the possibility of LG stimulating 

allogeneic T-cel!s in a non-class II MHC restricted fashion. Early 

results from these experiments indicate that LG can induce 

proliferation in allogeneic CD8+ T-cells. This finding is a very 

important piece of evidence in proving that LG stimulate the 

immune system through circuits other than the MHC class II/CD4+ 

T-cell pathway. However, more work is required to confirm this 

very preliminary finding. There is some evidence that LG present 

antigen in a non-MHC class II restricted fashion in a recent study 

by Porcelli et al. In this study, the authors demonstrate the 

specific recognition of GDI a by a CD4‘/GD8‘ (double negative) 

cytotoxic T-cell line which causes direct lysis of GDI a bearing 

cells [102]. Furhtermore, this lysis can be blocked with anti- 

GDI a monoclonal antibodies [102]. The GDI a positive cells used 
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in this study, however, were the MOLT-4 thymic leukemia cell 

line and thus proof of non-MHC class II restricted antigen 

presentation by physiologic LC is still lacking. While a great deal 

of work is still needed to understand the regulation of LC and 

their unique surface antigen CDIa, work like ours and Porcelli's 

has begun to describe the regulation of the observed phenotype 

and function of LC, and may eventually lead to a precise 

understanding of the role of these cells in the immunology of the 

skin. 
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Figure 1. viability of Langerhans cells in vitro as assessed on days 
0, 2, 3, 5, and 6 of culture by trypan blue exclusion. There was no 
difference in viability in cultures treated with IL-1, GM-CSF, TNF-a, 
or control. 
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Figure 2. percentage of cells expressing CDIa surface antigen as 
assessed by flow cytometry on days 0, 2, 3, and 5 of culture. By day 
5 control cells were 9.75±1.2% CDIa positive, while GM-CSF treated 
cells expressed significantly lower levels of CDIa (4.2^0.26%, 
p=0.01), and IL-1 treated cells expressed significantly more CDIa 
(14.45±0.04%, p=0.02). TNF-a did not produce a significant change in 
CDIa expression (11.35+1.2%, p=0.5). 
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250 

Figure 3. Undepleted thymocyte cultures. GM-CSF was associated 
with decreased GDI a expression (78+7.4%, p=0.03), and increased 
MHC I expression (148±34%, p=0.02). IL-1 was associated with 
increased GDI a expression (157^33%, p=Q.Q1), while all other 
effects were satistically insignificant. 
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Figure 4. MHC I depleted thymocyte cultures. GM-CSF was 
associated with increased MHC I expression (180+4.0%, p=0.008), and 
IL-1 with increased CDIa expression (152±17%, p=0.03). All other 
effects were insignificant. 
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250 

Figure 5. CDIa depleted thymocyte cultures. GM-CSF was 
associated with decreased CDIa expression (64±6%, p=0.01), IL-1 
was associated with increased CDIa expression (146+16%, p=0.03), 
and increased MHC I expression (22G±17%, p=0.08). AH other effects 
were insignificant. 
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Figure 6. Langerhans cell/T-cell MELR. LC pretreated with IL-1 
produced levels of T-cell proliferation unchanged from control, as 
did LC pretreated with TNF-a (except at 900 LC where TNF-a 
produced significantly less T-cell proliferation than control p=0.05). 
GM-CSF pretreatment produced significantly increased levels of T- 
cell proliferation (p<0.02) except at 300 LC (p=0.5). 
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Figure 7. Langerhans cell/T-cell MELR focusing on GM-CSF. GM-CSF 
produced increased levels of T-cell proliferation at p<0.01 at all 
doses of LC tested except 250 where p=0.Q5. In wells in which there 
were no LC there was no difference in the amount of T-cell 
proliferation seen in control versus GM-CSF treated cultures (p=0.3). 
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Figure 8. Langerhans cell/T-cell MELR in which all LC were 
pretreated with GM-CSF. At the time of T-cell addition, blocking 
antibodies to either MHC I, MHC II, or CDIa were added to culture. 
Anti-MHC II produced a significant reduction in T-cell proliferation 
at 0-1500 LC (p<0.03), but no reduction at 2000-3000 LC (p=0.5). 
Anti-MHC I produced a significant reduction at all doses of LC 
(p<0.03). Anti-CDIa did not produce a significant change in T-cell 
proliferation compared to control (p=0.5). 
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